Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle

نویسندگان

  • E. B. Davies
  • Barry Simon
چکیده

We prove that for any n × n matrix, A, and z with |z| ≥ ‖A‖, we have that ‖(z − A)−1‖ ≤ cot( π 4n )dist(z, spec(A)). We apply this result to the study of random orthogonal polynomials on the unit circle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Five-diagonal Matrices and Zeros of Orthogonal Polynomials on the Unit Circle

It is shown that monic orthogonal polynomials on the unit circle are the characteristic polynomials of certain five-diagonal matrices depending on the Schur parameters. This result is achieved through the study of orthogonal Laurent polynomials on the unit circle. More precisely, it is a consequence of the five term recurrence relation obtained for these orthogonal Laurent polynomials, and the ...

متن کامل

Asymptotic zero distribution of random polynomials spanned by general bases

Zeros of Kac polynomials spanned by monomials with i.i.d. random coefficients are asymptotically uniformly distributed near the unit circumference. We give estimates of the expected discrepancy between the zero counting measure and the normalized arclength on the unit circle. Similar results are established for polynomials with random coefficients spanned by different bases, e.g., by orthogonal...

متن کامل

Orthogonal Polynomials on the Unit Circle with Verblunsky Coefficients Defined by the Skew-shift

I give an example of a family of orthogonal polynomials on the unit circle with Verblunsky coefficients given by the skew-shift for which the associated measures are supported on the entire unit circle and almost-every Aleksandrov measure is pure point. Furthermore, I show in the case of the two dimensional skew-shift the zeros of para-orthogonal polynomials obey the same statistics as an appro...

متن کامل

Zeros and ratio asymptotics for matrix orthogonal polynomials

Ratio asymptotics for matrix orthogonal polynomials with recurrence coefficients An and Bn having limits A and B respectively (the matrix Nevai class) were obtained by Durán. In the present paper we obtain an alternative description of the limiting ratio. We generalize it to recurrence coefficients which are asymptotically periodic with higher periodicity, or which are slowly varying in functio...

متن کامل

Block Jacobi Matrices and Zeros of Multivariate Orthogonal Polynomials

A commuting family of symmetric matrices are called the block Jacobi matrices, if they are block tridiagonal. They are related to multivariate orthogonal polynomials. We study their eigenvalues and joint eigenvectors. The joint eigenvalues of the truncated block Jacobi matrices correspond to the common zeros of the multivariate orthogonal polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2006